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We consider the non-stationary dynamics of an intense localized vortex on a β-plane
using a shallow-water model. An asymptotic theory for a vortex with piecewise-
continuous potential vorticity is developed assuming the Rossby number to be small
and the free surface elevation to be small but finite. Analogously to the well-known
quasi-geostrophic model, the vortex translation is produced by a secondary dipole
circulation (β-gyres) developed in the vortex vicinity and consisting of two parts. The
first part (geostrophic β-gyres) coincides with the β-gyres in the geostrophic model,
and the second (ageostrophic β-gyres) is due to ageostrophic terms in the governing
equations. The time evolution of the ageostrophic β-gyres consists of fast and slow
stages. During the fast stage the radiation of inertia–gravity waves results in the
rapid development of the β-gyres from zero to a dipole field independent of the
fast time variable. Correspondingly, the vortex accelerates practically instantaneously
(compared to the typical swirling time) to some finite value of the translation speed. At
the next slow stage the inertia–gravity wave radiation is insignificant and the β-gyres
evolve with the typical swirling time. The total zonal translation speed induced by
the geostrophic and ageostrophic β-gyres tends with increasing time to the speed of a
steadily translating monopole exceeding (not exceeding) the drift velocity of Rossby
waves for anticyclones (cyclones). This cyclone/anticyclone asymmetry generalizes the
well-known finding about the greater longevity of anticyclones compared to cyclones
to the case of non-stationary evolving monopoles. The influence of inertia–gravity
waves upon the vortex evolution is analysed. The main role of these waves is to provide
a ‘fast’ adjustment to the ‘slow’ vortex evolution. The energy of inertia–gravity waves
is negligible compare to the energy of the geostrophic β-gyres. Yet another feature
of the ageostrophic vortex evolution is that the area of the potential vorticity patch
changes in the course of time, the cyclonic patch contracting and the anticyclonic one
expanding.

1. Introduction
The main goal of this work is a better understanding of the influence of ageostrophic

factors on the dynamics of localized mesoscale vortices in the oceans and atmospheres
of the Earth and other planets. Two interrelated effects are of primary interest: (i) the
presence of fast inertia–gravity waves along with slow Rossby waves, and (ii) the finite
deviations of isopycnals and the free surface from their equilibrium positions. The
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role of inertia–gravity waves in the evolution of localized mesoscale vortex is poorly
understood; even a numerical investigation of this problem presents difficulties. The
finite deviation of isopycnals breaks the symmetry, which characterizes the quasi-
geostrophic (QG) potential vorticity equation

∂

∂t
(∇2Ψ − R−2

d Ψ ) + β
∂Ψ

∂x
+ J(Ψ,∇2Ψ ) = 0 (1.1)

(e.g. Pedlosky 1979). One can readily show that (1.1) is invariant relative to the
transformation

x→ x, y → −y, Ψ → −Ψ. (1.2)

Due to (1.2) the solution for a cyclone (anticyclone) can be derived from the solution
for an anticyclone (cyclone) by the simple simultaneous change of the streamfunction
sign and the mirror reflection with respect to the zonal axis. In other words, a cyclone
and anticyclone differing only in sign are equivalent in the QG approximation. Lack of
such a symmetry in an ageostrophic system results in the so-called cyclone/anticyclone
asymmetry (CAA) when cyclones and anticyclones may substantially differ in their
properties.

This CAA effect is of great interest since it is well known that the most persistent
long-lived large-scale vortices have an anticyclonic sense of rotation. In the ocean
intrathermocline lenses can exist for several years and travel distances of thousands of
kilometers (McWilliams 1985; Kamenkovich, Koshlyakov & Monin 1986). Large long-
lived anticyclones are observed in the atmospheres of Jupiter, Saturn and Neptune
(e.g. Nezlin & Sutyrin 1994). The difference between anticyclones and cyclones has
also been clearly demonstrated in laboratory (e.g. Nezlin & Sutyrin 1994) and in
numerical experiments (e.g. Matsuura & Yamagata 1982; Williams & Yamagata
1984; Davey & Killworth 1984; Chassignet & Cushman-Roisin 1991).

Theoretical explanations of the CAA have focused mainly on studies of steadily
translating vortices (e.g. Nof 1981; Killworth 1983, 1986; Nycander & Sutyrin 1992;
Sutyrin & Dewar 1992; Stegner & Zeitlin 1996; Benilov 1996). It has been found that
intense anticyclones steadily translating westward faster than linear Rossby waves
can exist in shallow-water models. For cyclones the same asymptotic theory fails and
the existence of analogous solutions is doubtful. The only attempt to examine the
non-stationary dynamics of a localized vortex in the presence of ageostrophic factors
was made by Sutyrin (1994) using a heuristic combination of intermediate geostrophic
and frontal geostrophic models.

The main aim of this paper is to examine the influence of ageostrophic effects upon
the non-stationary dynamics of intense monopolar vortices. To do this we generalize
the model of an intense vortex with piecewise-constant potential vorticity (Sutyrin &
Flierl 1994; Reznik, Grimshaw & Benilov 2000, referred to herein as RGB) from QG
theory to the case of a one-layer shallow-water model and consider the evolution of
such a vortex. Our main attention is focused on the time development of the CAA
and the role of the fast inertia–gravity waves in the intense vortex evolution.

The paper is organized as follows. In § 2 the model is formulated. Section 3 contains
a description of the initial vortex. In § 4 we discuss the asymptotic algorithm; if the
reader is not interested in these mathematical details, then it is only necessary to
read the introduction of § 4 (up to the first subsection), and then proceed directly
to § 5. Section 5 contains the most important formulae (almost without derivation)
describing the geostrophic and ageostrophic β-gyres and radiated inertia–gravity
waves. Section 6 is concerned mainly with some properties of the ageostrophic
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β-gyres. The evolution of the vortex patch is considered in § 7. A summary of our
results is presented in § 8. A detailed analysis of the first and second approximations
is contained in Appendices A and B, while the derivation of some formulae needed
to calculate the vortex patch expansion rate in § 7 is contained in Appendix C. These
Appendices are available from the JFM office, or directly from either author.

2. Model
2.1. Governing equations

We consider the non-stationary dynamics of a localized vortex on the β-plane in the
framework of a shallow-water model. The model equations, in moving coordinates
attached to the vortex centre, take the form

∂u

∂t
+ (u− Ẋ)

∂u

∂x
+ (v − Ẏ )

∂u

∂y
− fv = −g′ ∂h

∂x
, (2.1a)

∂v

∂t
+ (u− Ẋ)

∂v

∂x
+ (v − Ẏ )

∂v

∂y
+ fu = −g′ ∂h

∂y
, (2.1b)

∂h

∂t
+
∂[h(u− Ẋ)]

∂x
+
∂[h(v − Ẏ )]

∂y
= 0 (2.1c)

Here x, y denote eastward and northward coordinates and t time; h is the layer
depth; u, v are the absolute zonal and meridional velocities; g′ is reduced gravity;
f = f0 + β(y + Y ) is the Coriolis parameter; X(t), Y (t) are the zonal and meridional
distances travelled by the vortex, (Ẋ, Ẏ ) is the vortex translation speed. The vortex
path r = (X,Y ) and translation speed are unknown in advance and should be
determined as part of the solution.

The potential vorticity equation follows from (2.1a–c):

∂Π

∂t
+ (u− Ẋ)

∂Π

∂x
+ (v − Ẏ )

∂Π

∂y
= 0, Π =

ζ + f

h
, ζ =

∂v

∂x
− ∂u

∂y
, (2.2)

where ζ and Π are the relative and potential vorticity respectively. It is convenient to
introduce the new variable Ω:

Ω =
ζ + f0

h
− f0

h∞
, so that Π = Ω +

β(y + Y )

h
+
f0

h∞
. (2.3)

Here h = ĥ + h∞, where h∞ denotes the limiting value of the depth h at infinity and

ĥ is the depth deviation; unlike Π the function Ω decays at infinity together with the

velocity field and ĥ. The equation for Ω simply follows from (2.2):

∂Ω

∂t
+ (u− Ẋ)

∂Ω

∂x
+ (v − Ẏ )

∂Ω

∂y
+
β

h

[
(y + Y )

(
∂u

∂x
+
∂v

∂y

)
+ v

]
= 0. (2.4)

2.2. Piecewise-continuous potential vorticity model

We consider the case when the initial state is an axisymmetric vortex patch, i.e.

V = VI (r), U = 0, ĥ = ĥI (r) for t = 0, (2.5)

and the initial vortex is determined by the requirement that it satisfies equations
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(2.1a–c), (2.4) when β = 0, so that

V 2
I

r
+ f0VI = g′

fĥI

fr
, ΩI =

ζI − f0ĥI/h∞
h∞ + ĥI

= γQH(rI − r), (2.6a, b)

ζI =
dVI
dr

+
VI

r
. (2.6c)

Here U,V are radial and azimuthal velocities in polar coordinates attached to the
vortex centre, U = u cos θ + v sin θ, V = −u sin θ + v cos θ; H(z) is the Heaviside
function, H(z) = 1 if z > 0 and H(z) = 0 if z < 0; Q is a constant vorticity amplitude,
and γ = ±1 for cyclones (anticyclones) respectively assuming that f0 > 0 (i.e. the
Northern Hemisphere convention); rI is the initial radius, and is a constant.

At subsequent times the function Ω remains piecewise-continuous, i.e. it is repre-
sented by the form

Ω =
ζ − f0ĥ/h∞
h∞ + ĥ

= γQH(rb − r) + q(x, y, t), (2.7)

where q(x, y, t) is a continuous function and the patch boundary is expressed using
the polar coordinates r and θ so that

rb = rb(θ, t). (2.8)

Substituting (2.7), (2.8) into (2.4) and equating to zero the singular and regular parts
in the resulting equations we obtain

∂q

∂t
+ (u− Ẋ)

∂q

∂x
+ (v − Ẏ )

∂q

∂y
+
β

h

[
(y + Y )

(
∂u

∂x
+
∂v

∂y

)
+ v

]
= 0, (2.9a)

∂rb

∂t
+
V ∗|b
rb

∂rb

∂θ
−U∗|b = 0, (2.9b)

where U∗ = U − Ẋ cos θ − Ẏ sin θ, V ∗ = V + Ẋ sin θ − Ẏ cos θ and a|b = a(rb, θ, t).
Since the patch boundary is a material line the total mass inside the patch is

conserved in time, ∫
S

h dx dy =

∫ 2π

0

dθ

∫ rb

0

rh dr = M0 = constant, (2.10)

where S is the patch region bounded by the curve (2.8). Formally the conservation
law (2.10) is obtained using (2.8), (2.9b) and the continuity equation (2.1c).

The location (xC, yC) of the centroid of the vortex patch is given by

(xC, yC) =
1

M0

∫
S

(x, y)h dx dy, (2.11)

and we identify the vortex centre (and correspondingly the origin of the moving
coordinate frame) with the patch centroid. By this definition the centroid is stationary
in the moving coordinates and (xC, yC) = 0 whence by virtue of (2.11) we have∫ 2π

0

dθ

∫ rb

0

r2heiθ dr = 0. (2.12)

Equations (2.1a, b), (2.7), (2.9a, b) and (2.12) form a closed system which allows us to
calculate the vortex evolution and propagation.
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2.3. Intense vortex

Next we introduce the following non-dimensional variables:

(x̄, ȳ) =
1

Rd
(x, y), t̄ = f0t, (Ū, V̄ ) =

(U,V )

Rdh∞Q
,

¯̂
h =

g′

f0R
2
dQh∞

ĥ,

q̄ =
h∞
βRd

q, r̄b =
rb

Rd
, ( ¯̇X, ¯̇Y ) =

(Ẋ, Ẏ )

βR2
d

.

 (2.13)

Our scaling is based on the assumptions (usual for geophysical applications) that the
vortex size is comparable with the Rossby deformation scale Rd =

√
g′h∞/f0, and the

Coriolis force and the pressure gradients are of the same order in the momentum
equations (2.1a, b). Also we assume that the regular component of the potential
vorticity q and the vortex propagation are initiated by the β-effect (see also Reznik
& Dewar 1994); the ‘fast’ time scale f−1

0 is caused by the presence of inertia–gravity
waves in the model.

Two non-dimensional parameters play an important role in this problem,

ε =
Up

f0Rd
, εβ =

βRd

f0

=
βR2

d

Up

ε, (2.14a, b)

where Up = Rdh∞Q is the typical orbital velocity. Here ε is the Rossby number, and
εβ is the ratio of a typical Rossby wave frequency to the inertial frequency f0. We
assume the vortex to be intense, i.e. its orbital velocity Up greatly exceeds the typical
translation speed βR2

d . Thus

εβ � ε. (2.15)

For typical oceanic parameters in midlatitudes, β = 2 × 10−13 cm−1 s−1, Rd = 50 km,
f0 = 10−4 s−1, the parameter εβ = 0.01. To estimate the Rossby number we consider the
initial axisymmetric vortex defined by (2.6). In non-dimensional form these equations
are written as follows (bars and circumflexes are omitted):

ε
V 2
I

r
+ VI =

dhI
dr
,

ζI − hI
1 + εhI

= γH(rI − r), ζI =
dVI
dr

+
VI

r
. (2.16a–c)

The depth and velocity profiles for ε = 0.1 are shown in figure 1 (see § 3 for more
detailed discussion). The profiles depend only weakly on the Rossby number and the
maximum orbital velocity is approximately 0.4, which corresponds to dimensional
velocity Upm = 0.4Up. To fit the model vortex to a vortex with maximum velocity
U∗p one should choose the vorticity amplitude in such a way that Upm = U∗p , i.e.
Up = U∗p/0.4; therefore the Rossby number (2.14a) in our problem is

ε =
U∗p

0.4f0Rd
. (2.17)

For mid-oceanic eddies U∗p = 20 cm s−1 and so ε = 0.1, while for rings U∗p = 1 m s−1,
and so then ε = 0.5. In what follows we focus on the case of mid-oceanic eddies, and
so we may put

ε� 1, εβ = ε2. (2.18)

Note that in the case of rings the parameter εβ is effectively the only small parameter
in the model.

In non-dimensional variables the system (2.1a, b), (2.7), (2.9a, b) and (2.12) becomes,
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Figure 1. Radial profiles of the initial elevation hI (r) and the
initial azimuthal velocity VI (r); ε = 0.1.

in polar coordinates,

∂U

∂t
+ ε

[
U∗

∂U

∂r
+
V ∗

r

(
∂U

∂θ
− V

)]
− [1 + ε2(y + ε2Y )]V = −∂h

∂r
, (2.19a)

∂V

∂t
+ ε

[
U∗

∂V

∂r
+
V ∗

r

(
∂V

∂θ
+U

)]
+ [1 + ε2(y + ε2Y )]U = −1

r

∂h

∂θ
, (2.19b)

∂q

∂t
+ ε

(
U∗

∂q

∂r
+
V ∗

r

∂q

∂θ

)
+

ε

1 + εh
[(y + ε2Y )∇ ·U +U sin θ + V cos θ] = 0, (2.19c)

ζ − h
1 + εh

= γH(rb − r) + εq, ζ =
1

r

[
∂

∂r
(rV )− ∂U

∂θ

]
, (2.19d)

∂rb

∂t
+ ε

(
V ∗|b
rb

∂rb

∂θ
−U∗|b

)
= 0, (2.19e)
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0

dθ

∫ rb

0

r2(1 + εh)eiθ dr = 0, (2.19f)

[U] = [V ] = [h] = [∇h] = 0. (2.19g)

Here the bars have been omitted, and

U∗ = U − ε(Ẋ cos θ + Ẏ sin θ), V ∗ = V + ε(Ẋ sin θ − Ẏ cos θ), (2.20a)

[a] = a(rb − 0, θ, t)− a(rb + 0, θ, t), (2.20b)

∇ ·U =
∂U

∂r
+
U

r
+

1

r

∂V

∂θ
. (2.20c)

When deriving (2.19f) from (2.12) we use the relation ĥ/h∞ = O(ε) which follows
from (2.13), (2.14). The conditions (2.19g) state the continuity at the patch boundary
r = rb(θ, t) of the velocity, pressure, and pressure gradient fields. The initial conditions
to the system (2.19) are

q = 0, V = VI (r), U = 0, h = hI (r) for t = 0, (2.21)

where VI, hI are found from (2.16).
This system of equations generalizes to the shallow-water case the quasi-geostrophic

a model of a vortex with piecewise-constant potential vorticity suggested by Sutyrin
& Flierl (1994), and developed in RGB.

2.4. Asymptotic expansions

A solution to the system (2.19a–g) is sought in the form of the following asymptotic
expansions:

U = εU1(r, θ, t, T1, T2, . . .) + · · · , (2.22a)

V = VI (r) + εVI (r, θ, t, T1, T2, . . .) + · · · , (2.22b)

h = hI (r) + εh1(r, θ, t, T1, T2, . . .) + · · · , (2.22c)

q = q0(r, θ, t, T1, T2, . . .) + εq1(r, θ, t, T1, T2, . . .) + · · · , (2.22d)

rb = rI + εr1(θ, t, T1, T2, . . .) + · · · , (2.22e)

(X,Y ) = (X0, Y0)(t, T1, T2, . . .) + ε(X1, Y1)(t, T1, T2, . . .) + · · · . (2.22f)

The initial vortex fields VI, hI are also represented in the same form:

VI = VI0(r) + εVI1(r) + · · · , (2.23a)

hI = hI0(r) + εhI1(r) + · · · , (2.23b)

UI = 0, rI = 1. (2.23c)

The slow times Tn = εnt, n = 1, 2, . . . , are related to typical swirling times due to
successive terms in the asymptotic expansion of the initial vortex field VI, hI . These
are needed to prevent the regular vorticity q from a secular growth in time.

Since we are intending to examine development of the initial vortex VI, hI , all
correction fields in (2.22) should satisfy a zero initial condition:

Vm+1 = hm+1 = rm+1 = qm = Xm = Ym = 0 for t = 0, m = 0, 1, 2, . . . . (2.24)

The simplest formal way to derive the equations for the unsteady fields in (2.22)
consists of three steps: (i) substitution of (2.23) into (2.16) to obtain the nth-order
initial field correction; (ii) substitution of (2.22), (2.23) into (2.19) to obtain the
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nth-order correction for the ‘composite’ field (e.g. VIn(r) + Vn(r, θ, t, T1, T2, . . .)); (iii)
subtraction of the equations for the nth-order initial field from the corresponding
equations for the same order ‘composite’ field to obtain the desired equations.

Note that the expansions (2.22) are regular in the spatial coordinates, contrary
to the purely barotropic case with infinite Rossby scale where the far-field solution
depends on the stretched coordinates (xs, ys) = ε(x, y). In that case, it is necessary to
match the near- and far-field asymptotic expansions in order to obtain a uniformly
valid solution (see Reznik & Dewar 1994; Llewellyn Smith 1997 for details). In the
case under consideration the Rossby scale is finite, and, correspondingly, the group
velocity of Rossby waves is bounded in absolute value. Indeed, more precisely, the
Rossby wave group velocity is O(ε) for all wavelengths, and hence even on the long
time scale T the Rossby waves remain in the vortex vicinity. Hence, at least up to
times of O(ε), there is no need to treat the Rossby wave far field separately.

Another possible source of the far-field irregularity is due to the fast inertia–gravity
waves radiated by the vortex. The phase and group velocities of these waves greatly
exceed both the typical swirling speed Up (for small Rossby number ε) and the phase
and group velocities of the Rossby waves. Therefore these waves excite the far-field
motion practically instantaneously in comparison with the typical Rossby time scale
Tw = (βR)−1 and the advective time scale Td = Rd/Up. However, the analysis shows
(see below and also Reznik, Zeitlin & Ben Jelloul 2001) that there is no need to
introduce expansions of a special form to describe the far field of inertia–gravity
waves, at least in the lowest order. The slow evolution of the vortex does not lead
to radiation of the fast waves, except for the aforementioned initial rapid transient
adjustment, and these waves cannot be captured by the weak vortex flow. Thus,
the lowest-order inertia–gravity waves do not interact with the slow vortex and are
described by the homogeneous linear wave equation throughout the whole plane (see
§§ 4, 5 below).

3. Initial state
Using equations (2.16) and the expansions (2.23) one can readily find the initial

state VI, hI to any desired level of accuracy. The lowest-order quantities are given by

hI0 = γ

{ −1 +K1(1)I0(r), r 6 1

−I1(1)K0(r), r > 1,
VI0 = γ

{
K1(1)I1(r), r 6 1

I1(1)K1(r), r > 1,
(3.1a, b)

and are identical to the initial geostrophic streamfunction and azimuthal velocity in
RGB (see equations (5.2) to (5.4) there). The functions Km(r), Im(r), m = 0, 1, 2, . . . ,
are the modified Bessel functions of mth order, therefore VI0, hI0 and all other fields
decay exponentially for r →∞.

In the first-order approximation we have

hI1 = s1 + s2, VI1 =
dhI1
dr
− V 2

I0

r
(3.2a, b)

where

s1 = −I0(r)

∫ ∞
r

K1(z)V
2
I0 dz +K0(r)

∫ r

0

I1(z)V
2
I0 dz, (3.3a)

s2 = γ


−I0(r)

∫ 1

r

zK0(z)hI0 dz −K0(r)

∫ r

0

zI0(z)hI0 dz, r 6 1

−K0(r)

∫ 1

0

zI0(z)hI0 dz, r > 1.

(3.3b)
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The second-order correction to the initial vortex can be written as

hI2 = a1 + a2, VI2 =
dhI2
dr
− 2

VI0VI1

r
, (3.4a, b)

a1 = 2

[
−I0(r)

∫ ∞
r

K1(z)VI0VI1 dz +K0(r)

∫ r

0

I1(z)VI0VI1 dz

]
, (3.5a)

a2 = γ


−I0(r)

∫ 1

r

zK0(z)hI1 dz −K0(r)

∫ r

0

zI0(z)hI1 dz, r 6 1

−K0(r)

∫ 1

0

zI0(z)hI1 dz, r > 1.

(3.5b)

The elevation and azimuthal velocity profiles hI (r), VI (r) are shown in figure 1
for ε = 0.1. They are similar to corresponding profiles of real geophysical eddies,
for example oceanic rings. The elevation hI in the vortex centre is maximum for
the anticyclone and minimum for the cyclone, and decays monotonically in absolute
value when moving to the vortex periphery. The azimuthal velocity VI is positive for
the cyclone and negative for the anticyclone, and grows in absolute value from zero
at the vortex centre to the maximum value reached at the patch boundary; it decays
with further increasing distance from the vortex centre. An interesting feature is that
the anticyclone is somewhat more intense than the cyclone for the same vorticity
amplitude; obviously this effect is related to ageostrophic terms in (2.16a, b).

4. Algorithm
In this Section we outline the algorithm used to derive the nth approximation in

the expansions (2.22). Substitution of (2.22), (2.23) into the governing system (2.19)
gives the following problem at the nth order:

∂Un

∂t
− Vn = −∂hn

∂r
+ F(U)n,

∂Vn

∂t
+Un = −1

r

∂hn

∂θ
+ F(V )n, (4.1a, b)

∂qn

∂t
+
∂qn−1

∂T1

+ Ω0

∂qn−1

∂θ
= F(q)n, (4.1c)

ζn − hn = qn−1 + F(ζ)n, ζn =
1

r

[
∂

∂r
(rVn)− ∂Un

∂θ

]
, (4.1d, e)

∂rn+1

∂t
+
∂rn

∂T1

+ Ω0(1)
∂rn

∂θ
−Un|b + Ẋn−1 cos θ + Ẏ n−1 sin θ = F(r)n, (4.1f)∫ 2π

0

eiθdθ

∫ 1

0

r2hndr +

∫ 2π

0

(hI0|brn + rn+1)e
iθdθ = F(B)n, (4.1g)

[Un] = D(U)n, [hn] = D(h)n, [Vn] = −[V ′I0]rn+D(V )n,

[
∂hn

∂r

]
= −[V ′I0]rn+D(h′)n.

(4.1h)

The functions F(U)n, D(U)n etc. in (4.1) are known from the preceding approxi-
mations; Ω0 = Ω0(r) = VI0/r is the lowest-order angular velocity of the initial vortex;
here and below a|b = a(1, θ, t), [a] = a(1− 0, θ, t)− a(1 + 0, θ, t).

It is convenient to represent each quantity in (4.1) as a sum of the fast and slow
components, i.e.

a = ā+ ã, ā = 〈a〉, (4.2)
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where the slow component ā is derived by averaging of a with respect to the fast
time t,

〈a〉 = lim
T̄→∞

1

T̄

∫ T̄

0

a dt. (4.3)

An important point is that some information about the variables rn, qn−1 is obtained
at the preceding (n − 1)th step: we know the fast components r̃n, q̃n−1, and the first
azimuthal component R̄(1)

n of the slow component r̄n, where

R̄(1)
n =

i

π

∫ 2π

0

r̄ne
−iθdθ. (4.4)

We will show that analysis of the system (4.1) given r̃n, q̃n−1, R̄
(1)
n allows us to

determine the nth-order fields and the quantities r̃n+1, q̃n, R̄
(1)
n+1, i.e. the algorithm is

self-consistent.

4.1. Analysis of slow fields

Applying the averaging operator (4.3) to the system (4.1) gives the equations for the
slow components,

V̄n =
∂h̄n

∂r
− F̄(U)n, Ūn = −1

r

∂h̄n

∂θ
+ F̄(V )n, (4.5a, b)

∂q̄n−1

∂T1

+ Ω0

∂q̄n−1

∂θ
= F̄(q)n, (4.5c)

ζ̄n − h̄n = q̄n−1 + F̄(ζ)n, ζ̄n =
1

r

[
∂

∂r
(rV̄n)− ∂Ūn

∂θ

]
, (4.5d, e)

∂r̄n

∂T1

+ Ω0(1)
∂r̄n

∂θ
− Ūn|b + ¯̇Xn−1 cos θ + ¯̇Y n−1 sin θ = F̄(r)n, (4.5f)∫ 2π

0

eiθdθ

∫ 1

0

r2h̄ndr +

∫ 2π

0

(hI0|br̄n + r̄n+1)e
iθdθ = F̄(B)n, (4.5g)

[Ūn] = D̄(U)n, [h̄n] = D̄(h)n, [V̄n] = −[V ′I0]r̄n+D̄(V )n,

[
∂h̄n

∂r

]
= −[V ′I0]r̄n+D̄(h′)n.

(4.5h–k)

Equations (4.4), (4.5) form a closed system for the determination of the slow com-
ponents. First we analyse (4.5c) for the vorticity correction q̄n−1. Then we reduce
(4.5a, b), (4.5d, e) to one equation for the slow elevation h̄n:

∇2h̄n − h̄ = F̄(h)n, F̄(h)n = q̄n−1 + F̄(ζ)n +
1

r

[
∂

∂r
(rF̄(U)n) +

∂F̄(V )n
∂θ

]
. (4.6)

Equations (4.6), (4.5f), (4.4) and (4.5i, k) allow us to define h̄n and r̄n. The function h̄n
is split into two components h̄n1, h̄n2:

h̄n = h̄n1 + h̄n2, (4.7a)

∇2h̄n1 − h̄n1 = F̄(h)n, [h̄n1] = D̄(h)n,

[
∂h̄n1

∂r

]
= D̄(h′)n, (4.7b)

∇2h̄n2 − h̄n2 = 0, [h̄n2] = 0,

[
∂h̄n2

∂r

]
= −[V ′I0]r̄n. (4.7c)
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The component h̄n1 is determined from (4.7b) in a unique way given F̄(h)n, D̄(h)n,
D̄(h′)n. The component h̄n2 and the boundary perturbation r̄n are decomposed into
Fourier series in θ:

r̄n =

∞∑
m=0

Im(R̄(m)
n einθ), h̄n2 = −γ

∞∑
m=0

Φm Im(R̄(m)
n eimθ). (4.8a, b)

Here

R̄(m)
n =

i

π

∫ 2π

0

r̄ne
−imθdθ, Φm =

{
Km(1)Im(r), r 6 1

Im(1)Km(r), r > 1.
(4.9a, b)

Expressing Ūn in (4.5f) in terms of h̄n (see (4.5b)) and substituting the Fourier series
(4.8a, b) into the resulting equation we find the slow translation speed components
¯̇Xn−1,

¯̇Y n−1 and the remaining Fourier components of r̄n (recall that R̄(1)
n is known

from the preceding (n− 1)th step):

¯̇Xn−1 + i ¯̇Y n−1 = −i
∂R̄(1)∗

n

∂T1

+ iḠ(1)∗
n , (4.10)

R̄(k)
n = R̄(k)

n (θ, 0)e−iΩ̂kT1 + e−iΩ̂kT1

∫ T1

0

Ḡ(k)
n eiΩ̂kT1dT1, k 6= 1. (4.11)

Here Ḡ(k)
n , k = 0, 1, . . . , are the coefficients of the Fourier decomposition of the function

Ḡn,

Ḡn = F̄(r)n −
(
∂h̄n1

∂θ
− F̄(V )n

) ∣∣∣∣
b

=

∞∑
m=0

Im(Ḡ(m)
n eimθ), Ω̂m = γm[Φ1(1)− Φm(1)],

(4.12a, b)
and asterisks denotes the complex conjugate value.

Note that the initial conditions R̄(k)
n (θ, 0) follow from (2.24) given r̃n. Knowing r̄n

we determine the component h̄n2 from (4.8a), and then the slow velocity components

Ūn, V̄n from (4.5a, b). Finally, we find the first azimuthal component R̄(1)
n+1 of the slow

component r̄n+1 from (4.5g):

R̄
(1)
n+1 =

i

π

∫ 2π

0

r̄n+1e
−iθdθ =

i

π

(
F̄(B)∗n −

∫ 2π

0

e−iθdθ

∫ 1

0

r2h̄ndr

)
− hI0|bR̄(1)

n . (4.13)

4.2. Analysis of fast fields

The equations for the fast components have the form

∂Ũn

∂t
− Ṽn = −∂h̃n

∂r
+ F̃(U)n,

∂Ṽn

∂t
+ Ũn = −1

r

∂h̃n

∂θ
+ F̃(V )n, (4.14a, b)

∂q̃n

∂t
+
∂q̃n−1

∂T1

+ Ω0

∂q̃n−1

∂θ
= F̃(q)n, (4.14c)

ζ̃n − h̃n = q̃n−1 + F̃(ζ)n, ζ̃n =
1

r

[
∂

∂r
(rṼn)− ∂Ũn

∂θ

]
(4.14d, e)

∂r̃n+1

∂t
+
∂r̃n

∂T1

+ Ω0(1)
∂r̃n

∂θ
− Ũn|b + ˜̇Xn−1 cos θ + ˜̇Y n−1 sin θ = F̃(r)n, (4.14f)∫ 2π

0

eiθdθ

∫ 1

0

r2h̃ndr +

∫ 2π

0

(hI0|br̃n + r̃n+1)e
iθdθ = F̃(B)n, (4.14g)
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[Ũn] = D̃(U)n, [h̃n] = D̃(h)n, [Ṽn] = −[V ′I0]r̃n+D̃(V )n,

[
∂h̃n

∂r

]
= −[V ′I0]r̃n+D̃(h′)n.

(4.14h–k)

Since q̃n−1 is known one can find q̃n from (4.14c). Then (4.14a, b, d, e) are reduced to a
single equation for h̃n using the equations for vorticity ζ̃n and divergence D̃n = ∇ · Ū n,
Ũ n = (Ũn, Ṽn), following from the momentum equations (4.14a, b),

∂ζ̃n

∂t
+ D̃n = rotzF̃ (U )n,

∂D̃n

∂t
− ζ̃n = −∇2h̃n + ∇ · F̃ (U )n. (4.15a, b)

Here

F̃ (U )n = (F̃(U)n, F̃(V )n), rotzA =
1

r

∂

∂r
(rAθ)− ∂Ar

∂θ
, for A = (Ar, Aθ). (4.16a, b)

The resulting equation for h̃n, has the form

−∂
2h̃n

∂t2
+ ∇2h̃n − h̃n = F̃(h)n, (4.17a)

F̃hn =
∂2(q̃n−1 + F̃(ζ)n)

∂t2
+ q̃n−1 + F̃(ζ)n + ∇ · F̃ (U )n − ∂

∂t
(rotzF̃ (U )n). (4.17b)

The conditions (4.14i, k) for h̃n are determined given r̃n. One initial condition for h̃n is
derived from (2.24) given the slow component h̄n,

h̃n|t=0 = −h̄n|t=0. (4.18)

Another initial condition follows from (4.15a), (4.14d) and (2.24),

∂h̃n

∂t

∣∣∣∣
t=0

= ∇ · Ū n|t=0 −
[
∂(q̃n−1 + F̃(ζ)n)

∂t
− rotzF̃ (U )n

]
t=0

. (4.19)

Here Ū n = (Ūn, V̄n) is the known slow velocity. Equations (4.17), (4.18), (4.19) and
(4.14i, k) form a closed system allowing us to calculate h̃n. In turn, given h̃n one can
find the fast velocity component Ũ n = (Ũn, Ṽn) from (4.14a, b) and the first azimuthal
component R̃(1)

n+1 of r̃n+1 using (4.14g). Knowing R̃(1)
n+1, Ũn and r̃n one obtains the fast

components of translation speed ˜̇Xn−1,
˜̇Y n−1 and the other azimuthal components of

r̃n+1 from (4.14f). So the above analysis of the slow and fast components allows us

to derive the nth-order fields given r̃n, q̃n−1 and R̄(1)
n and the quantities r̃n+1, q̃n, R̄

(1)
n+1

which are needed to calculate the next approximation.
The analysis starts from the simple equations

q̃0 = r̃1 = R̃
(1)
1 = 0 (4.20)

which readily follow from (2.19c, e, f) in the lowest order. Using (4.20) we analyse the
problem (4.1) for n = 1 and so on, following the algorithm described.

To study new physical effects we have to proceed up to the third-order approxima-
tion. Technically, it is not a problem to calculate the higher-order corrections using
the above algorithm but the resulting formulae turn out to be very cumbersome.
What is more important, many of them describe QG dynamics studied thoroughly in
RGB. In the next Section we discuss briefly the most important formulae for the first
and second corrections without a detailed derivation. More detail analysis of these
corrections is given in Appendices A and B.
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5. Main results for the first- and second-order terms
5.1. First-order correction: geostrophic β-gyres

All first-order fields evolve slowly in time, and the fast components are absent in this
approximation; that is, Ũ1, Ṽ1, q̃1, h̃1 and r̃1 are all zero (see Appendix A). Hence for
these first-order variables we can omit the decomposition (4.2). The patch boundary
perturbation is identically zero,

r1 = 0, (5.1)

so that the vortex patch shape still remains unchanged. All fields have a dipole
structure, the regular vorticity q0 being given by the equations

q0 = q0s sin θ + q0c cos θ, q0s + iq0c = −r + (r + C0)e
−iϕ0 (5.2a, b)

where

ϕ0 = Ω0T1, C0 = C0(r, T2, . . .), C0 = 0 for T2 = 0. (5.3)

The elevation field h1 has a similar structure,

∇2h1 − h1 = q0, h1 = A1s sin θ + A1c cos θ, (5.4a, b)

the coefficients A1s, A1c being expressed in terms of the vorticity q0,

A = A1s + iA1c = −I1(r)

∫ ∞
r

zK1(z)Q0 dz −K1(r)

∫ r

0

zI1(z)Q0 dz, (5.5a)

Q0 = q0s + iq0c. (5.5b)

The first-order fields are geostrophically balanced, i.e. the velocities U1, V1 are related
to the elevation h1 by the geostrophic relations

U1 = −1

r

∂h1

∂θ
, V1 =

∂h1

∂r
. (5.6a, b)

Finally, the lowest-order translation velocity is given by the formula

Ẋ0 + iẎ 0 = −A∗(1, T1, . . .). (5.7)

The solution (5.1), (5.2), (5.4), (5.5), (5.6) and (5.7) exactly coincides with the first-
order solution in the quasi-geostrophic model of RGB. In other words, the first-order
correction describes the slowly (in comparison with inertia–gravity waves) developing
quasi-geostrophic β-gyres gradually increasing in magnitude, size and energy (see
figure 2 and RGB). It is clearly seen from figure 2 that this process is accompanied by
the rise of practically rectilinear uniform flow in the main vortex vicinity, intensifying
and expanding with increasing time. Namely this flow advects the vortex with the
translation speed (5.7) shown in figure 3 (see RGB for a further discussion of this
and related issues).

The analysis given in RGB shows that the fields U1, V1, q0 and the translation speed
(Ẋ0, Ẏ 0) are bounded for T1 →∞. At the same time the spatial PV gradient associated
with q0 increases linearly with increasing time since ∂q0/∂r = O(T1) as seen from
(5.2), (5.3). In other words, the asymptotic expansion for the PV gradient becomes
disordered at times t = O(ε−2) and the question arises about the range of time over
which the expansions (2.22) remain a good approximation to the solution. To estimate
this range we have considered the remainder arising when substituting the approximate
solution (UI, VI , hI , rI , 0)+ε(U1, V1, h1, r1, q0) into the basic equations (2.19). Obviously,



364 G. M. Reznik and R. Grimshaw

4

2

0

–2

–4

–4 –2 0 2 4

–0.10

–
0.10

0.40

(a)Max = 0.6; Min = –0.6; CI = 0.1

4

2

0

–2

–4

–4 –2 0 2 4

0.
01

–0.01

–0.01

0.01

Max = 0.033; Min = –0.033; CI = 0.005

–0.
01

0.01

0.01

0.01

4

2

0

–2

–4

–4 –2 0 2 4

–0.20

–0.20

0.80

Max = 1.17; Min = –1.17; CI = 0.2

+

–

0.
80

4

2

0

–2

–4

–4 –2 0 2 4

0.00

0.00

0.00

Max = 0.09; Min = –0.09; CI = 0.02

0.00

4

2

0

–2

–4

–4 –2 0 2 4

–0.60

–0.60

–0.20

0.40

Max = 1.558; Min = –1.558; CI = 0.2

+

–

0.
40

4

2

0

–2

–4

–4 –2 0 2 4

0.00

0.00

Max = 0.086; Min = –0.086; CI = 0.02

0.00

1.40

–0.20

–––0.10

Figure 2. For caption see facing page.

the most ‘dangerous’ part of the remainder is related to the term U∗∂q/∂r in (2.19c).
The detailed analysis of this term is given in RGB (see §§ 5, 7 therein); here we note
that the rapid growth of ∂q/∂r is compensated by the smallness of the residual flow
U∗ and the remainder remains small at least up to times t = 1000 = O(ε−3). Thus the
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Figure 2. Development of the geostrophic β-gyre elevation h1(r, θ, T1, . . .) (left) and the ageostrophic
β-gyre elevation h̄d2(r, θ, T1, . . .) (right). The upper figures correspond to T1 = 10, middle to T1 = 50,
bottom to T1 = 100. MAX and MIN are the maximum and minimum values of the fields shown;
CI is the contour interval. (a) Anticyclone, (b) cyclone.
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Figure 3. The translation speed components: solid lines – the lowest-order components induced by
the geostrophic β-gyres; dashed lines – the corrections induced by the ageostrophic β-gyres. The
time T coincides with the first slow time T1.

disordering of the PV gradient does not prevent the expansions (2.22) from being a
good approximation to the solution at times much longer than t = O(ε−2).

Ageostrophic effects (the inertia–gravity wave radiation and a finite surface eleva-
tion) are absent in this level of approximation. To proceed to the next approximation
the following equations are needed (see Appendix A for their derivation):

r̃2 = 0, q̃1 = 0, R̄
(1)
2 = −

∫ 1

0

r2A dr. (5.8a, b, c)

5.2. Second-order fields and ageostrophic effects

The second-order fields are more complicated than the first-order fields: (i) even their
slow mode is not geostrophically balanced (the ‘slow’ functions F(U)2, F(V )2 are
non-zero in (4.1a, b)); (ii) they contain both slow and fast modes; (iii) they possess
the axisymmetric and quadrupole components as well as the dipole component.

The vorticity correction q1 remains slow (see (5.8b)) and is given by

q1 = −hI0q0 + q12, (5.9)

where the term q12 is represented as a sum

q12 = q20(r, T1, . . .) + q2s(r, T1, . . .) sin 2θ + q2c(r, T1, . . .) cos 2θ. (5.10)
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Formulae for the functions q20, q2s, q2c are given in Appendix B. The solution q12

exactly coincides with the second-order vorticity correction in the quasi-geostrophic
model developed in RGB (cf. the solution (6.2), (6.3) therein). The axisymmetric term
q20(r, T1, . . .) describes a decrease of the relative vorticity when the vortex travels along
the meridian. The quadrupole term q2s sin 2θ + q2c cos 2θ is induced by the nonlinear
self-interaction of the first-order dipole circulation h1, U1, V1.

The equations (4.7) for the slow elevation h̄2 become

h̄2 = h̄21 + h̄22, (5.11)

∇2h̄21 − h̄21 = γh1H(1− r) +
1

r

[
2(VI0V1)

′ − 2V ′I0
∂U1

∂θ
+ (r2VI0)

′ sin θ
]

+ q12, (5.12a)

[h̄21] =

[
∂h̄21

∂r

]
= 0, (5.12b)

∇2h̄22 − h̄22 = 0, [h̄22] = 0,

[
∂h̄22

∂r

]
= −[V ′I0]r2. (5.13)

We note that the function r2 is non-zero and slow (as follows from (5.8a)).
The first two terms on the right-hand side of (5.12a) have a dipole structure, but

the term q12 does not, as seen from (5.10). The solution to (5.12a, b) is conveniently
represented as a sum

h̄21 = h̄d21 + h̄c2g, (5.14)

where the dipole part h̄d21 and non-dipole term h̄c2g satisfy the equations

∇2h̄d21 − h̄d21 = γh1H(1− r) +
1

r

[
2(VI0V1)

′ − 2V ′I0
∂U1

∂θ
+ (r2VI0)

′ sin θ
]
, (5.15)

∇2h̄c2g − h̄c2g = q12, (5.16)

respectively. The solution h̄c2g is written in the form

h̄c2g = B20(r, T1, . . .) + B2s(r, T1, . . .) sin 2θ + B2c(r, T1, . . .) cos 2θ. (5.17)

The formulae for B20, B2s, B2c are given in Appendix B. The solution (5.17) coincides
with the continuous part of the second-order correction to the geostrophic stream
function given by equations (6.4), (6.5) in RGB (without terms proportional to R

(2)
2 ).

The axisymmetric part B20 is a correction to the main vortex profile induced by the
β-effect, while the quadrupole term B2s sin 2θ+B2c cos 2θ is initiated by the quadrupole
terms in the vorticity correction (5.10).

The dipole part h̄d21 is of the most interest here since it arises due to ageostrophic
terms in the basic equations and causes the effects absent in QG models. The solution
to (5.15) is conveniently represented in the form

h̄d21 = h
(1)
21 + h

(2)
21 + h

(3)
21 , h

(k)
21 = Im(Ek(r, T1, . . .)e

iθ), k = 1, 2, 3, (5.18)

where

E1 = γ


−I1(r)

∫ 1

r

zK1(z)A dz −K1(r)

∫ r

0

zI1(z)A dz, r 6 1

−K1(r)

∫ 1

0

zI1(z)A dz, r > 1,

(5.19a)
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E2 = 2

[
−I1(r)

∫ ∞
1

K2(z)
VI0

z
(zA′ − A) dz +K1(r)

∫ r

0

I2(z)
VI0

z
(zA′ − A) dz

]
,

(5.19b)

E3 = −I1(r)

∫ ∞
r

zK0(z)(zVI0 + hI0) dz +K1(r)

∫ r

0

zI0(z)(zVI0 + hI0) dz. (5.19c)

Here A is defined by (5.5a). Knowing h̄d21, h̄
c
2g , and, consequently, h̄21 one can calculate

the function Ḡ2 in (4.12a) for n = 2 and determine the translation speed components
¯̇X1,

¯̇Y 1 from (4.10) using R̄(1)
2 from (5.8c). As a result we have

¯̇Y 1 + i ¯̇X1 = −
∫ 1

0

r2 ∂Q0

∂T1

dr − ∂A

∂T1

∣∣∣∣
b

− iΩ0(1)(A′ − A)|b − i(E1 + E2 + E3)|b. (5.20)

Note that only the dipole part h̄d21 of h̄21 enters the function Ḡ(1)∗
2 in (4.10) and causes

the last term in (5.20) (which turns out to be most important; see the next Section).
Also, knowing Ḡ2 one can calculate the coefficients (4.9a) in the Fourier represen-

tation (4.8a) for r2:

r2 =

2∑
m=1

Im(R(m)
2 eimθ), R

(2)
2 = −2ie−iΩ̂2T1

∫ T1

0

(B2s + iB2c)|beiΩ̂2T1dT1, (5.21a, b)

where the coefficient R(1)
2 is defined by (5.8c). Note that there is no axisymmetric

component in r2 (see below in § 7). Equations (5.21) together with (4.8b) allow us to
obtain the function h̄22,

h̄22 = −γ
2∑
n=1

ΦnIm(R(n)
2 einθ). (5.22)

The slow elevation h̄2 is determined by (5.11), (5.14), (5.17), (5.18) and (5.22). The
slow velocity corrections Ū2, V̄2 are given by (B 16a, b).

The fast corrections Ũ2, Ṽ2, h̃2 are solutions to the set of homogeneous equations,

∂Ũ2

∂t
− Ṽ2 = −∂h̃2

∂r
,

∂Ṽ2

∂t
+ Ũ2 = −1

r

∂h̃2

∂θ
, ζ̃2 − h̃2 = 0, (5.23a, b, c)

which can be reduced to the wave equation for h̃2 with spatially localized initial
conditions:

−∂
2h̃2

∂t2
+ ∇2h̃2 − h̃2 = 0, h̃2 = −h̄2,

∂h̃2

∂t
= − ∂ζ1

∂T1

− VI0 cos θ for t = 0.

(5.24a, b, c)

Simple analysis shows that both the initial fields (5.24b, c) and, therefore, the correction
fields h̃2, Ũ2, Ṽ2 have a dipole structure,

h̃2 = h̃2s sin θ + h̃2c cos θ, (Ũ2, Ṽ2) = (Ũ2s, Ṽ2s) sin θ + (Ũ2c, Ṽ2c) cos θ. (5.25)

This results in a non-zero fast translation speed correction ˜̇X1,
˜̇Y 1 given by equation

(B 24) (see Appendix B for more details),

˜̇Y 1 + i ˜̇X1 =

∫ 1

0

r2 ∂(h̃2s + ih̃2c)

∂t
dr + (Ũ2s + iŨ2c)|b. (5.26)

We emphasize that the translation speed correction (Ẋ1, Ẏ 1) is absent in the QG
model (see RGB) and is caused only by the ageostrophic effects.
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The system (5.24) describes the radiation of the dispersive fast inertia–gravity waves
by the localized initial state (5.24b, c). The energy of these waves is conserved,∫ 2π

0

dθ

∫ ∞
0

(
Ũ2

2 + Ṽ 2
2

2
+
h̃2

2

2

)
r dr = constant, (5.27)

which readily follows from (5.23). One can show also that the energy of interaction
(Eint) between the fast waves and the lowest-order slow component is identically zero.
In our case

Eint =

∫ 2π

0

dθ

∫ ∞
0

(U1Ũ2 + V1Ṽ2 + h1h̃2)r dr, (5.28)

and taking into account (5.6), (5.23c) we have

Eint =

∫ 2π

0

dθ

∫ ∞
0

h1(h̃2 − ζ̃2)r dr = 0. (5.29)

Physically (5.27) and (5.29) mean that the lowest-order inertia–gravity wave field
is energetically insignificant and is essentially just an adjustment to an unbalanced
initial state. A similar conclusion is valid for any localized initial state with parameters
satisfying (2.18) (Reznik et al. 2001).

The wave field h̃2 can be found, for example, using a Fourier transform in the space
coordinates; the velocity field (Ũ2, Ṽ2) is obtained from equations (B 21a, b). One can
readily show that

h̃2, Ũ2, Ṽ2 = O(1/t), t→∞, r, θ fixed, (5.30)

i.e. these fields rapidly decay at fixed point with increasing time t.

6. Some properties of the ageostrophic β-gyres
One can show that due to the fast temporal decay of the inertia–gravity wave field

(see (5.30)) the fast component ( ˜̇X1,
˜̇Y 1) rapidly decays with increasing time t,

( ˜̇X1,
˜̇Y 1) = O(1/t), t→∞. (6.1)

Thus only the slow translation speed correction ( ¯̇X1,
¯̇Y 1) is dynamically important

for times greatly exceeding the inertial time f−1
0 . The analysis of the various terms in

(5.20) shows that the first three terms on the right-hand side of (5.20) result only in
small-amplitude slowly decaying oscillations; the main contribution to a progressive
vortex motion is produced by the last sum, here caused by the dipole part of the term
∂h̄21/∂θ in (4.12a). The terms E1, E2 of this sum evolve with a typical orbital time
starting from zero at t = 0. The term E3 is time-independent and arises as a result of a
rapid relaxation of the field h2 (equal to zero at the initial moment by virtue of (2.24))
to the stationary dipole h(3)

21 in (5.18) due to the radiation of inertia–gravity waves. So in
the shallow-water model the vortex accelerates practically instantaneously (compared
to the typical orbital time) to some finite translation speed.

Analogously to the zero-order translation speed (Ẋ0, Ẏ 0) the correction (Ẋ1, Ẏ 1)
depends mainly on the dipole part hd2 of the surface elevation h2. The dipole term
hd2, being absent in the QG model (see RGB), will be referred to as the ageostrophic
β-gyre and is given by the formula

hd2 = h̄d21 + h̄d22 + h̃2 (6.2)
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where h̄d22 is the dipole part of the field h̄22 induced by the patch boundary pertur-
bations (see (5.22)),

h̄d22 = −γΦ1 Im (R̄(1)
2 eiθ). (6.3)

As we have shown the slow part of hd2, namely

h̄d2 = h̄d21 + h̄d22, (6.4)

induces a significant translation speed. The rapidly changing dipole h̃2, consisting of
radiating inertia–gravity waves, turns out to be dynamically insignificant because of
the fast decay (6.1).

The development of the field h̄d2 is shown in figure 2(a, b). An interesting feature
of this field is its compactness. Unlike the primary β-gyres, where h1 expands and
slowly increases in magnitude with increasing time, the field h̄d2 is concentrated mainly
in the vicinity of the vortex patch, especially for large times; its amplitude tends
to some finite value for T1 → ∞. This difference between h1 and h̄d2 is related to a
strong localization of the terms in the sum (6.4). The spatial decay of the term h̄d22

is determined by the function Φ1(r), which is strongly localized in space (see (4.9b)).
The right-hand side of equation (5.15) for h̄d21 is also strongly localized in space and
the degree of localization does not depend on time. At the same time the right-hand
side, q0, of equation (5.4a) for h1, being exponentially decaying in space, ‘expands’
proportionally to lnT1 for large T1 as can be readily seen from (5.2), (5.3).

The polarities of the dipoles h̄d2 are opposite in sign for the cyclone and anticyclone
(see figure 2a, b). One can readily see from this figure that for the case of the cyclone
(anticyclone) the dipole h̄d2 contributes to a positive (negative) zonal translation speed
corrections Ẋ1. Thus the ageostrophic β-gyres force the anticyclone (cyclone) to move
faster (slower) in the zonal direction than the analogous vortex in the QG model.
This cyclone/anticyclone asymmetry is clearly seen in figure 3 showing the time

dependence of ¯̇X1,
¯̇Y 1. Note that the meridional translation speed correction ¯̇Y 1 is

practically negligible.

The slow sum h
(1)
21 + h

(2)
21 in (5.18) tends to a stationary limit with increasing time

T1, and we can show that

E1|b → 2

∫ 1

0

rh0 dr − h0(1), E1|b → 0, T1 � 1. (6.5)

At the same time we have from (5.19c) that

E3|b = h0(1)−
∫ 1

0

rh0 dr. (6.6)

Other terms on the right-hand side of (5.20) tend to zero as T1 → ∞. Therefore, for
large times (much exceeding typical orbital times) the translation speed correction is
given by the simple equation

¯̇X1 + i ¯̇Y 1 ≈ −
∫ 1

0

rh0 dr, T1 →∞. (6.7)

The limiting speed (6.7) is purely zonal and its sign is negative (positive) for the
anticyclone (cyclone).
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It is interesting to compare the total translation speed (to this order) (Ẋ0, Ẏ 0) +
ε(Ẋ1, Ẏ 1) with the speed of the whole vortex centroid (which is not the same as the
vortex patch centroid) given by

(Ẋcv, Ẏ cv) =
1

Mv

∂

∂t

∫
(x, y)ĥ dx dy =

1

Mv

∫
h(u, v) dx dy, (6.8a)

Mv =

∫
ĥ dx dy = constant, h = h∞ + ĥ. (6.8b)

Equation (6.8a) is derived using the continuity equation (2.1c) written in fixed coor-
dinates. Rewriting (2.1a, b) (in the same coordinates) in terms of the depth-integrated
momentum (hu, hv) one can obtain the following relations (Killworth 1983; Cushman-
Roisin, Chassignet & Tang 1990):

∂

∂t

∫
hu dx dy − f0

∫
hv dx dy = β

∫
yhv dx dy, (6.9a)

∂

∂t

∫
hv dx dy + f0

∫
hu dx dy = −β

∫
yhu dx dy. (6.9b)

In our case the contribution of the first-order dipole correction to the integrals on
the right-hand side of (6.9) is small and we have∫

yhu dx dy ≈ −π
∫ ∞

0

r2hV1 dr,

∫
yhv dx dy ≈ 0, Mv = 2π

∫ ∞
0

rĥI dr.

(6.10a, b, c)

Using (6.10) one can easily find the components of the total momentum from (6.9)
and then the centroid speed from (6.8a). Neglecting inertial oscillations one obtains

Ẋcv ≈ β

f0

∫ ∞
0

r2hVI dr

/
2

∫ ∞
0

rĥI dr, Ẏ cv ≈ 0. (6.11a, b)

Equations (6.11) have previously been obtained in many papers (e.g. Nof 1981;
Killworth 1983; Cushman-Roisin, Chassignet & Tang 1990; Benilov 1996). In the
quasi-geostrophic approximation we have

f0VI ≈ g′ ∂ĥI
∂r
, Ẋcv ≈ −βR2

d , (6.12a, b)

i.e. the quasi-geostrophic vortex centroid moves with the drift speed−βR2
d independent

of the vortex polarity.

If the depth deviation ĥ is small compared to h∞ but finite as in our case then

VI =
g′

f0

∂ĥI

∂r
− 1

f0

V 2
I

r
≈ g′

f0

∂ĥI

∂r
− g′2

f3
0

1

r

(
∂ĥI

∂r

)2

. (6.13)

It readily follows from (6.11), (6.13) that

Ẋcv ≈ βR2
d

−1−
 g′

f2
0

∫ ∞
0

r

(
∂ĥI

∂r

)2

dr +
1

h∞

∫ ∞
0

rĥ2
I dr


/

2

∫ ∞
0

rĥI dr

 . (6.14)
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In non-dimensional form (6.14) is written as

Ẋcv ≈ −1−
∫ ∞

0

r

(
∂ĥI

∂r

)2

dr +

∫ ∞
0

rĥ2
I dr

/2

∫ ∞
0

rĥI dr. (6.15)

It is seen from (6.12b) and (6.14) that the second term in the square brackets in (6.14)
arises due to ageostrophic effects. This additional term is positive (negative) for the
cyclone (anticyclone), i.e. the cyclone (anticyclone) centroid moves westward slower
(faster) than the drift velocity. Obviously, equations (6.10) to (6.15) are valid for an
arbitrary axisymmetric initial vortex characterized by a small Rossby number.

An important feature of the quasi-geostrophic model is a tendency of the non-
stationary lowest-order translation speed to the limiting vortex centroid speed, equal
in that case to the drift velocity (6.12b) (Reznik 1992; Sutyrin & Flierl 1994; RGB).
The analogous property holds in the case under consideration. The lowest-order
translation speed (5.7) coincides with the analogous value in RGB and

Ẋ0 + iẎ 0 → −1, T1 � 1 (6.16)

(see equations (5.12), (5.13) of RGB). The second ‘ageostrophic’ term in (6.15)
is exactly equal to the limiting speed (6.7). Therefore the total translation speed
(Ẋ0, Ẏ 0) + ε(Ẋ1, Ẏ 1) really tends to the limiting speed (Ẋcv, 0) as T1 → ∞, where
Ẋcv is given by (6.15). Thus for large time in our model the cyclone (anticyclone)
tends to move westward with a translation speed lying inside (outside) the range of
the phase velocities of linear Rossby waves. Obviously this property contributes to
a greater longevity of anticyclones compared to cyclones, since the Rossby waves
radiated by the vortex have a smaller intensity for the anticyclone than for the
cyclone.

7. Patch area changes
Two effects of importance arise in the third-order approximation. First, there is

the vortex deceleration induced by the secondary geostrophic β-gyres arising as a
result of (i) nonlinear interactions between the primary β-gyres and axisymmetric and
quadrupole corrections, and (ii) the planetary vorticity advection by the axisymmetric
and quadrupole velocity correction fields. This effect was analysed m detail in the
quasi-geostrophic model developed in RGB (§ 7 of RGB). The second new effect
arising in the shallow-water model is that the vortex patch area changes in time; in
the quasi-geostrophic model it is conserved (see RGB for more detail). This means
that in the Fourier series for the successive patch boundary corrections rm (see the
expansion (2.22e)),

rm =

∞∑
n=0

Im(R(n)
m einθ), (7.1)

the coefficient R(0)
m (t, T1, . . .) is different from zero for m = 3, 4 . . . , but is zero for

m = 1, 2. To calculate these terms we use the following third-order equations:

∂U3

∂t
− V3 = −∂h3

∂r
+ F(U)3,

∂V3

∂t
+U3 = −1

r

∂h3

∂θ
+ F(V )3, (7.2a, b)

ζ3 − h3 = γh2H(1− r) + hI0q1 + (hI1 + h1)q0 + q2, (7.2c)
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ζ3 =
1

r

[
∂

∂r
(rV3)− ∂U3

∂θ

]
, (7.2d)

∂r4

∂t
+
∂r3

∂T1

+
∂r2

∂T2

+ VI0(1)
∂r3

∂θ
+ [VI1(1) + V1|b + Ẋ0 sin θ − Ẏ 0 cos θ]

∂r2

∂θ

−∂U1

∂r

∣∣∣∣
b

r2 −U3|b + Ẋ2 cos θ + Ẏ 2 sin θ = 0. (7.2e)

The formulae for F(U)3, F(V )3 are rather cumbersome and so are given in Appen-
dix C.

When azimuthally averaged, equation (7.2e) takes the form

∂r40

∂t
+
∂r30

∂T1

− 〈U3|b〉+

〈
V1|b ∂r2

∂θ
− ∂U1

∂r

∣∣∣∣
b

r2 + (Ẋ0 sin θ − Ẏ 0 cos θ)
∂r2

∂θ

〉
= 0, (7.3)

where rk0 = Im(R(0)
k ), k = 3, 4, and the angle brackets denote azimuthal averaging,

〈a〉 =
1

2π

∫ 2π

0

a dθ.

Expressing V1, U1, Ẋ0 sin θ − Ẏ 0 cos θ in terms of h1 (see § 5) one can show that the
last term in (7.3) vanishes. To find the term 〈U3|b〉 we average (7.2a–d) with respect
to the azimuth θ and analyse the equations obtained (see Appendix C for details). As
a result we have

〈U3|b〉 = − ∂
2B20

∂r∂T1

∣∣∣∣
b

− 1
2
A1c|b, (7.4)

where B20, A1c are given by equations (B 14b), (5.5), respectively. By virtue of (B 25)
and (7.4) the second and third terms in (7.3) do not depend on the fast time, and
therefore we obtain a rather simple formula for the vortex patch expansion rate:

∂r30

∂T1

= 〈U3|b〉 = − ∂
2B20

∂r∂T1

∣∣∣∣
b

− 1
2
A1c|b, (7.5a)

∂2B20

∂r∂T1

∣∣∣∣
b

= −1

2
Im

[
I1(1)

∫ ∞
1

K1(r)Ā
∗Q̄0 dr +K1(1)

∫ 1

0

I1(r)Ā
∗Q̄0 dr

]
, (7.5b)

where Ā and Q̄0 are given by (B 8d).
The time dependence of the expansion rate (7.5a) is shown in figure 4. One can see

that an anticyclonic patch expands and a cyclonic patch contracts, which correlates
with a decrease in the absolute value of the depth elevation, as schematically shown
in figure 4. It is interesting that the expansion rate (7.5a) oscillates strongly in time.

8. Summary and conclusion
We have considered the non-stationary dynamics of an intense localized vortex on

the β-plane in a shallow-water model; the vortex is assumed to be axisymmetric at
the initial moment. Two interrelated effects are of primary interest: (i) the presence
of fast inertia–gravity waves along with the slow Rossby waves, and (ii) the finite
deviations of the free surface from its equilibrium position.

Without the β-effect both these effects are insignificant: an arbitrary axisymmetric
vortex does not radiate any waves and remains unchanged in time. The β-effect breaks
this axial symmetry; therefore with β 6= 0 the vortex radiates both inertia–gravity and
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Figure 4. The evolution of the vortex patch: (a) schematic of evolution due to the decrease of
the absolute value of the elevation: for the cyclone the patch contracts, and for the anticyclone it
expands; (b) the expansion rates of the vortex patch.

Rossby waves and moves along some curved trajectory. To investigate this evolution
an asymptotic theory for a vortex with a piecewise-continuous potential vorticity is
developed, assuming the Rossby number to be small and the free surface elevation to
be small but finite.

Analogously to the quasi-geostrophic model the vortex translation is produced
by the secondary dipole circulation (β-gyres) developed in the vortex vicinity. The
β-gyres consist of two parts. The first part (geostrophic β-gyres) coincides with the
β-gyres in the geostrophic model considered in RGB, and evolves with a typical
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swirling time from zero at t = 0. A gradual increase of the β-gyre magnitude and size
is accompanied by the rise of practically rectilinear uniform flow in the main vortex
vicinity, intensifying and expanding with increasing time. Namely this flow advects
the vortex along the dipole axis.

The second part (ageostrophic β-gyres) is initiated by the ageostrophic terms in
the basic equations. Compared to the geostrophic β-gyres the ageostrophic ones
are strongly localized, being confined mainly to the initial vortex vicinity; their
amplitude and energy do not grow after some adaptation period. The time evolution
of the ageostrophic β-gyres consists of fast and slow stages. During the fast stage the
radiation of inertia–gravity waves results in the rapid development of the β-gyres from
zero to a dipole field slowly evolving from some non-zero state. Correspondingly, the
vortex accelerates practically instantaneously (compared to the typical swirling time)
to some finite value of the translation speed. At the next slow stage the radiation is
insignificant and the β-gyres change with the typical swirling time.

The total westward translation speed induced by the geostrophic and ageostrophic
β-gyres tends with increasing time to the speed of a steadily translating monopole,
derived previously in a number of papers. For anticyclones the absolute value of this
limiting speed exceeds the absolute value of drift velocity, βR2

d , of Rossby waves; for
cyclones (if one assumes the steadily translating cyclones to exist) it is less. Obviously,
this cyclone/anticyclone asymmetry implies that the Rossby waves radiated by the
vortex have a smaller intensity for the anticyclone than for the cyclone. In connection
with this effect we recall that intense anticyclones steadily translating westward faster
than linear Rossby waves can exist in a shallow-water model (see the Introduction).
The existence of analogous solutions for cyclones is correspondingly doubtful, since
the cyclone propagating with a speed lying in the range of phase speeds of the linear
Rossby waves should radiate waves, and hence loses its energy. Our theory generalizes
the conclusion about the greater longevity of anticyclones compared to cyclones to
the case of non-stationary evolving monopoles.

The influence of inertia–gravity waves upon the vortex evolution was analysed. One
can say that the main role of these wave is to provide a ‘fast’ adjustment to a ‘slow’
vortex evolution. For large times the inertia–gravity wave field decays rapidly with
increasing time at any fixed point. The energy of inertia–gravity waves is negligible
compared to the energy of the evolving geostrophic β-gyres.

Yet another peculiarity of the ageostrophic vortex evolution is that the potential
vorticity patch changes its area in the course of time. Contraction of a cyclonic patch
and expansion of an anticyclonic patch accompany the decreasing in absolute value
of the depth elevation.
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